Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
J Med Primatol ; 53(2): e12694, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38454198

RESUMO

BACKGROUND: Animal models of respiratory viral infections are essential for investigating disease pathogenesis and the efficacy of antivirals and vaccine candidates. A major limitation in the research of respiratory diseases in animal models is correlating clinically relevant changes in pulmonary physiology with cellular and molecular mechanistic studies. Few animal models have captured and correlated physiologic changes in lung function and immune response within same experiment, which is critical given the heterogeneous nature of lung disease due to viral infections. In ventilated human patients, pulmonary physiology testing can be used to not only capture oxygenation, ventilation, but also pulmonary mechanics to yield quantitative measures of lung function and scalar tracings of flow-volume and pressure-volume loops. Application of this protocol during mechanical ventilation in non-human (NHP) models would represent a major advance in respiratory viral disease research. METHODS: We have applied and optimized a human pulmonary physiology testing protocol to ventilated pigtail macaques (Macaca nemestrina) at baseline and 5 days after influenza A (IAV) viral inoculation. RESULTS: The NHPs manifested clinical disease with hypothermia and loss of body weight. Declines in lung function were striking with a 66%-81% decline in P/F ratio, a measure of oxygenation reflecting the ratio of partial pressure of oxygen in arterial blood (PaO2 ) to the fraction of inspiratory oxygen concentration (FiO2 ). There was also a 16%-45% decline in lung compliance. CONCLUSION: We describe a new approach to performing pulmonary physiology testing protocol in non-human primates to better capture quantitative correlates of respiratory disease and demonstrate protection by therapeutics and vaccines.


Assuntos
Pulmão , Viroses , Humanos , Animais , Respiração Artificial/métodos , Oxigênio , Primatas
2.
Vaccines (Basel) ; 11(11)2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38006058

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic exposed the vulnerability of pregnant women to excess morbidity and mortality, as well as the disproportionate disease burden in certain racial, ethnic, and sociodemographic groups. Vaccine hesitancy represents a major threat to public health, and crafting messages that reach vulnerable groups and address their intersectionality remains a weakness for pandemic preparedness. We sought to investigate factors that influenced vaccine acceptance and social media ad response in a mixed-methods study of Spanish-speaking women living in the rural Western United States who were pregnant or recently pregnant between November 2022 and June 2023. Direct interviews were translated, transcribed, and coded, while the ad ratings were analyzed using linear mixed models. Participants most favorably rated ads that featured doctors and text-heavy content describing benefits of vaccination. Qualitative data illustrated how information from trusted medical providers along with generational and cultural history of vaccine acceptance positively impacted perspectives on vaccination. Immigration status had varying influences on vaccination perspectives. Future vaccination campaigns targeting Spanish-speaking pregnant individuals in rural communities should use medical providers as ad messengers and dispel fears that vaccine acceptance may lead to problems with immigration status.

3.
mBio ; 14(5): e0204923, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37747229

RESUMO

IMPORTANCE: Bacteria such as GBS can cause infections during pregnancy leading to preterm births, stillbirths, and neonatal infections. The interaction between host and bacterial factors during infections in the placenta is not fully understood. GBS secretes a hyaluronidase enzyme that is thought to digest host hyaluronan into immunosuppressive disaccharides that dampen TLR2/4 signaling, leading to increased bacterial dissemination and adverse outcomes. In this study, we show that GBS HylB mediates immune suppression and promotes bacterial infection during pregnancy that requires TLR2, TLR4, and IL-10. Understanding the interaction between host and bacterial factors can inform future therapeutic strategies to mitigate GBS infections.


Assuntos
Complicações Infecciosas na Gravidez , Infecções Estreptocócicas , Gravidez , Feminino , Recém-Nascido , Humanos , Hialuronoglucosaminidase/genética , Receptor 2 Toll-Like , Interleucina-10/genética , Streptococcus agalactiae , Complicações Infecciosas na Gravidez/microbiologia , Infecções Estreptocócicas/microbiologia
4.
Am J Obstet Gynecol ; 229(6): 647-655, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37516401

RESUMO

Preterm birth remains one of the most urgent unresolved medical problems in obstetrics, yet only 2 therapeutics for preventing preterm birth have ever been approved by the United States Food and Drug Administration, and neither remains on the market. The recent withdrawal of 17-hydroxyprogesterone caproate (17-OHPC, Makena) marks a new but familiar era for obstetrics with no Food and Drug Administration-approved pharmaceuticals to address preterm birth. The lack of pharmaceuticals reflects a broad and ineffective pipeline hindered by extensive regulatory hurdles, soaring costs of performing drug research, and concerns regarding adverse effects among a particularly vulnerable population. The pharmaceutical industry has historically limited investments in research for diseases with similarly small markets, such as cystic fibrosis, given their rarity and diminished projected financial return. The Orphan Drug Act, however, incentivizes drug development for "orphan diseases", defined as affecting <200,000 people in the United States annually. Although the total number of preterm births in the United States exceeds this threshold annually, the early subset of preterm birth (<34 weeks' gestation) would qualify, which is predominantly caused by inflammation and infection. The scientific rationale for classifying preterm birth into early and late subsets is strong given that their etiologies differ, and therapeutics that may be efficacious for one subset may not work for the other. For example, antiinflammatory therapeutics would be expected to be highly effective for early but not late preterm birth. A robust therapeutic pipeline of antiinflammatory drugs already exists, which could be used to target spontaneous early preterm birth, in combination with antibiotics shown to sterilize the amniotic cavity. New applications for therapeutics targeting spontaneous early preterm birth could categorize as orphan disease drugs, which could revitalize the preterm birth therapeutic pipeline. Herein, we describe why drugs targeting early preterm birth should qualify for orphan status, which may increase pharmaceutical interest for this vitally important obstetrical condition.


Assuntos
Nascimento Prematuro , Gravidez , Feminino , Recém-Nascido , Humanos , Estados Unidos , Nascimento Prematuro/prevenção & controle , Nascimento Prematuro/tratamento farmacológico , Hidroxiprogesteronas/uso terapêutico , Preparações Farmacêuticas , Doenças Raras/tratamento farmacológico , Caproato de 17 alfa-Hidroxiprogesterona/uso terapêutico
5.
Vaccines (Basel) ; 11(7)2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37515063

RESUMO

Pregnant women are a highly vaccine-resistant population and face unique circumstances that complicate vaccine decision-making. Pregnant women are also at increased risk of adverse maternal and neonatal outcomes to many vaccine-preventable diseases. Several models have been proposed to describe factors informing vaccine hesitancy and acceptance. However, none of these existing models are applicable to the complex decision-making involved with vaccine acceptance during pregnancy. We propose a model for vaccine decision-making in pregnancy that incorporates the following key factors: (1) perceived information sufficiency regarding vaccination risks during pregnancy, (2) harm avoidance to protect the fetus, (3) relationship with a healthcare provider, (4) perceived benefits of vaccination, and (5) perceived disease susceptibility and severity during pregnancy. In addition to these factors, the availability of research on vaccine safety during pregnancy, social determinants of health, structural barriers to vaccine access, prior vaccine acceptance, and trust in the healthcare system play roles in decision-making. As a final step, the pregnant individual must balance the risks and benefits of vaccination for themselves and their fetus, which adds greater complexity to the decision. Our model represents a first step in synthesizing factors informing vaccine decision-making by pregnant women, who represent a highly vaccine-resistant population and who are also at high risk for adverse outcomes for many infectious diseases.

6.
Placenta ; 141: 2-9, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-36939178

RESUMO

Viral hemorrhagic fevers (VHF) are endemic to Africa, South America and Asia and contribute to significant maternal and fetal morbidity and mortality. Viruses causing VHFs are typically zoonotic, spreading to humans through livestock, wildlife, or mosquito vectors. Some of the most lethal VHF viruses also impart a high-risk of stillbirth including ebolaviruses, Marburg virus (MARV), Lassa virus (LASV), and Rift Valley Fever Virus (RVFV). Large outbreaks and epidemics are common, though the impact on the mother, fetus and placenta is understudied from a public health, clinical and basic science perspective. Notably, these viruses utilize ubiquitous cellular surface entry receptors critical for normal placental function to enable viral invasion into multiple key cell types of the placenta and set the stage for maternal-fetal transmission and stillbirth. We employ insights from molecular virology and viral immunology to discuss how trophoblast expression of viral entry receptors for VHF viruses may increase the risk for viral transmission to the fetus and stillbirth. As the frequency of VHF outbreaks is expected to increase with worsening climate change, understanding the pathogenesis of VHF-related diseases in the placenta is paramount to predicting the impact of emerging viruses on the placenta and perinatal outcomes.


Assuntos
Febres Hemorrágicas Virais , Vírus , Gravidez , Animais , Feminino , Humanos , Natimorto , Placenta , Febres Hemorrágicas Virais/epidemiologia , Animais Selvagens
7.
Am J Obstet Gynecol ; 228(4): 463.e1-463.e20, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36126729

RESUMO

BACKGROUND: COVID-19 is caused by the SARS-CoV-2 virus and is associated with critical illness requiring hospitalization, maternal mortality, stillbirth, and preterm birth. SARS-CoV-2 has been shown to induce placental pathology. However, substantial gaps exist in our understanding of the pathophysiology of COVID-19 disease in pregnancy and the long-term impact of SARS-CoV-2 on the placenta and fetus. To what extent a SARS-CoV-2 infection of the placenta alters the placental antiviral innate immune response is not well understood. A dysregulated innate immune response in the setting of maternal COVID-19 disease may increase the risk of inflammatory tissue injury or placental compromise and may contribute to deleterious pregnancy outcomes. OBJECTIVE: We sought to determine the impact of a maternal SARS-CoV-2 infection on placental immune response by evaluating gene expression of a panel of 6 antiviral innate immune mediators that act as biomarkers of the antiviral and interferon cytokine response. Our hypothesis was that a SARS-CoV-2 infection during pregnancy would result in an up-regulated placental antiviral innate immune response. STUDY DESIGN: We performed a case-control study on placental tissues (chorionic villous tissues and chorioamniotic membrane) collected from pregnant patients with (N=140) and without (N=24) COVID-19 disease. We performed real-time quantitative polymerase chain reaction and immunohistochemistry, and the placental histopathology was evaluated. Clinical data were abstracted. Fisher exact test, Pearson correlations, and linear regression models were used to examine proportions and continuous data between patients with active (<10 days since diagnosis) vs recovered COVID-19 (>10 days since diagnosis) at the time of delivery. Secondary regression models adjusted for labor status as a covariate and evaluated potential correlation between placental innate immune gene expression and other variables. RESULTS: SARS-CoV-2 viral RNA was detected in placental tissues from 5 women with COVID-19 and from no controls (0/24, 0%). Only 1 of 5 cases with detectable SARS-CoV-2 viral RNA in placental tissues was confirmed to express SARS-CoV-2 nucleocapsid and spike proteins in syncytiotrophoblast cells. We detected a considerably lower gene expression of 5 critical innate immune mediators (IFNB, IFIT1, MXA, IL6, IL1B) in the chorionic villi and chorioamniotic membranes from women with active or recovered COVID-19 than controls, which remained significant after adjustment for labor status. There were minimal correlations between placental gene expression and other studied variables including gestational age at diagnosis, time interval between COVID-19 diagnosis and delivery, prepregnancy body mass index, COVID-19 disease severity, or placental pathology. CONCLUSION: A maternal SARS-CoV-2 infection was associated with an impaired placental innate immune response in chorionic villous tissues and chorioamniotic membranes that was not correlated with gestational age at COVID-19 diagnosis, time interval from COVID-19 diagnosis to delivery, maternal obesity, disease severity, or placental pathology.


Assuntos
COVID-19 , Complicações Infecciosas na Gravidez , Nascimento Prematuro , Feminino , Gravidez , Humanos , Recém-Nascido , COVID-19/patologia , Placenta/metabolismo , SARS-CoV-2 , Antivirais/metabolismo , Teste para COVID-19 , Estudos de Casos e Controles , Complicações Infecciosas na Gravidez/diagnóstico , Nascimento Prematuro/metabolismo , Imunidade Inata , RNA Viral/metabolismo , Expressão Gênica , Transmissão Vertical de Doenças Infecciosas
8.
Front Cell Infect Microbiol ; 13: 1299644, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38239507

RESUMO

Background: Preterm birth is a leading cause of neonatal mortality, which is often complicated by intrauterine infection and inflammation. We have established a nonhuman primate model of Group B Streptococcus (GBS, Streptococcus agalactiae) infection-associated preterm birth. Immune checkpoints are modulators of the immune response by activating or suppressing leukocyte function and are understudied in preterm birth. The objective of this study was to spatially profile changes in immune protein expression at the maternal-fetal interface during a GBS infection with a focus on immune checkpoints. Methods: Twelve nonhuman primates (pigtail macaques, Macaca nemestrina) received a choriodecidual inoculation of either: 1) 1-5 X 108 colony forming units (CFU) of hyperhemolytic/hypervirulent GBS (GBSΔcovR, N=4); 2) an isogenic/nonpigmented strain (GBS ΔcovRΔcylE, N=4); or, 3) saline (N=4). A Cesarean section was performed at preterm labor or 3 days after GBS infection or 7 days after saline inoculation. Nanostring GeoMx® Digital Spatial Profiling technology was used to segment protein expression within the amnion, chorion, and maternal decidua at the inoculation site using an immuno-oncology panel targeting 56 immunoproteins enriched in stimulatory and inhibitory immune checkpoint proteins or their protein ligands. Statistical analysis included R studio, Kruskal-Wallis, Pearson and Spearman tests. Results: Both inhibitory and stimulatory immune checkpoint proteins were significantly upregulated within the chorioamniotic membranes and decidua (VISTA, LAG3, PD-1, CD40, GITR), as well as their ligands (PD-L1, PD-L2, CD40L; all p<0.05). Immunostaining for VISTA revealed positive (VISTA+) cells, predominantly in the chorion and decidua. There were strong correlations between VISTA and amniotic fluid concentrations of IL-1ß, IL-6, IL-8, and TNF-α (all p<0.05), as well as maternal placental histopathology scores (p<0.05). Conclusion: Differential regulation of multiple immune checkpoint proteins in the decidua at the site of a GBS infection indicates a major perturbation in immunologic homeostasis that could benefit the host by restricting immune-driven pathologies or the pathogen by limiting immune surveillance. Protein expression of VISTA, an inhibitory immune checkpoint, was upregulated in the chorion and decidua after GBS infection. Investigating the impact of innate immune cell expression of inhibitory immune checkpoints may reveal new insights into placental host-pathogen interactions at the maternal-fetal interface.


Assuntos
Nascimento Prematuro , Infecções Estreptocócicas , Recém-Nascido , Animais , Humanos , Gravidez , Feminino , Streptococcus agalactiae/fisiologia , Placenta , Proteínas de Checkpoint Imunológico/metabolismo , Regulação para Cima , Cesárea , Infecções Estreptocócicas/patologia , Primatas
10.
Ann Clin Microbiol Antimicrob ; 21(1): 43, 2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36229877

RESUMO

Group B streptococci (GBS) are bacteria that can cause preterm birth and invasive neonatal disease. Heterogeneous expression of virulence factors enables GBS to exist as both commensal bacteria and to become highly invasive. A molecular epidemiological study comparing GBS bacterial traits, genotype and host characteristics may indicate whether it is possible to predict the risk of perinatal invasive GBS disease and more accurately target intrapartum antibiotic prophylaxis. A total of 229 invasive GBS isolates from Swedish pregnant women or neonates were assessed for virulence and phenotypic traits: hemolysis zone, hemolytic pigment (Granada agar), Streptococcus B Carrot Broth (SBCB) assay, CAMP factor, and hyaluronidase activity. Genes regulating hemolytic pigment synthesis (covR/covS, abx1, stk1, stp1) were sequenced. Of the virulence factors and phenotypes assessed, a Granada pigment or SBCB score ≥ 2 captured more than 90% of EOD isolates with excellent inter-rater reliability. High enzyme activity of hyaluronidase was observed in 16% (36/229) of the invasive GBS isolates and notably, in one case of stillbirth. Hyaluronidase activity was also significantly higher in GBS isolates obtained from pregnant/postpartum individuals versus the stillbirth or neonatal invasive isolates (p < 0.001). Sequencing analysis found that abx1 (g.T106I), stk1 (g.T211N), stp1 (g.K469R) and covS (g.V343M) variants were present significantly more often in the higher (Granada pigment score ≥ 2) versus lower pigmented isolates (p < 0.001, each variant). Among the 203 higher Granada pigment scoring isolates, 22 (10.8%) isolates had 3 of the four sequence variants and 10 (4.9%) had 2 of the four sequence variants. Although heterogeneity in GBS virulence factor expression was observed, the vast majority were more highly pigmented and contained several common sequence variants in genes regulating pigment synthesis. High activity of hyaluronidase may increase risk for stillbirth and invasive disease in pregnant or postpartum individuals. Our findings suggest that testing for GBS pigmentation and hyaluronidase may, albeit imperfectly, identify pregnant people at risk for invasive disease and represent a step towards a personalized medical approach for the administration of intrapartum antibiotic prophylaxis.


Assuntos
Nascimento Prematuro , Infecções Estreptocócicas , Ágar/metabolismo , Ágar/uso terapêutico , Antibacterianos/uso terapêutico , Feminino , Genótipo , Humanos , Hialuronoglucosaminidase/genética , Hialuronoglucosaminidase/metabolismo , Hialuronoglucosaminidase/uso terapêutico , Recém-Nascido , Fenótipo , Gravidez , Gestantes , Nascimento Prematuro/tratamento farmacológico , Reprodutibilidade dos Testes , Natimorto , Infecções Estreptocócicas/microbiologia , Streptococcus agalactiae , Suécia/epidemiologia , Virulência/genética , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
11.
Am J Obstet Gynecol ; 227(5): 685-695.e2, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35752303

RESUMO

The COVID-19 pandemic has disproportionately affected pregnant people by increasing health risks of maternal morbidity and mortality, stillbirth, and preterm birth. Although numerous studies have supported the safety and efficacy of COVID-19 vaccination in pregnancy in preventing or mitigating the risk for these adverse outcomes, many pregnant people remain hesitant. Approximately half of US adults regularly consume news from social media platforms, which are a fertile ground for the spread of vaccine disinformation. The lack of information regarding COVID-19 vaccine safety early in the pandemic fueled vaccine myths targeting the fears of pregnant people about vaccination risks. Saddened by the spike in maternal deaths of unvaccinated individuals during the COVID-19 Delta variant surge in the fall of 2021, we created a social media campaign to promote scientific communication regarding the risks of COVID-19 disease in pregnancy and the benefits of vaccination. We called the campaign "One Vax Two Lives," which refers to the ability of 1 maternal vaccine to benefit the health and lives of both the pregnant individual and their fetus. We present a blueprint of how we leveraged a large, interdisciplinary student workforce to create a social media campaign and research program studying vaccine hesitancy, which can be replicated by other groups. Community engagement and partnerships with key stakeholders, such as the Washington State Department of Health, were essential for amplifying the campaign and providing our team with feedback on content and approach. We present the analytics of our social media advertisements, web articles, and video content that helped inform the iterative design process of the multimedia content. Moving forward, we are launching collaborative research programs to study vaccine hesitancy and inform the development of new social media content designed for pregnant individuals who are: (1) Spanish-speaking Hispanic/Latina/x, (2) Black or Afro-Latinx, and (3) residents of rural communities in the State of Washington. Data from these mixed methods studies will inform new communication campaigns to reach vaccine-hesitant individuals. Finally, we discuss lessons learned and how the most impactful elements of the campaign can be translated to related areas of maternal public health.

12.
Front Virol ; 22022.
Artigo em Inglês | MEDLINE | ID: mdl-36713466

RESUMO

The influenza A virus (IAV) 2009 H1N1 pandemic was associated with an increased risk of maternal mortality, preterm birth, and stillbirth. The underlying mechanism for severe maternal lung disease and stillbirth is incompletely understood, but IAV infection is known to activate innate immunity triggering the release of cytokines. Elucidating the impact of progesterone (P4), a key hormone elevated in pregnancy, on the innate immune and inflammatory response to IAV infection is a critical step in understanding the pathogenesis of adverse maternal-fetal outcomes. IAV H1N1 pdm/09 was used to infect cell lines Calu-3 (lung adenoma) and ACH-3P (extravillous trophoblast) with or without P4 (100 nM) at multiplicity of infections (MOI) 0, 0.5, and 3. Cells were harvested at 24 and 48 hours post infection (hpi) and analyzed for cytopathic effects (CPE), replicating virus (TCID50), cytotoxicity (Lactate Dehydrogenase (LDH) assay), and NLRP3 inflammasome activation (caspase-1 activity, fluorometric assay). Activation of antiviral innate immunity was quantified (RT-qPCR, Luminex) by measuring biomarker gene and protein expression of innate immune activation (IFIT1, IFNB), inflammation (IL6), interferon signaling (MXA), chemokines (IL-8, IL-10). Both Calu-3 and ACH-3P were highly permissible to IAV infection at each timepoint as demonstrated by CPE and recovery of replicating virus. In Calu-3, progesterone treatment was associated with a significant increase in cytotoxicity, increased gene expression of IL6, and increased protein expression of IFN-ß, IL-6, and IL-18. Conversely, in ACH-3P, progesterone treatment was associated with significantly suppressed cytotoxicity, decreased gene expression of IFNB, IL6 and IL1B, and increased protein expression of IFN-ß and IL-6. In both cell lines, caspase-1 activity was significantly decreased after progesterone treatment, indicating NLRP3 inflammasome activation was not underlying the higher cell death in Calu-3. In summary, these data provide evidence that progesterone plays a dual role by ameliorating viral infection in the placenta but exacerbating influenza A virus-associated injury in the lung through nongenomic modulation of the innate immune response.

13.
Front Cell Infect Microbiol ; 11: 720789, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34540718

RESUMO

Group B streptococcus (GBS) is a gram-positive bacteria that asymptomatically colonizes the vaginal tract. However, during pregnancy maternal GBS colonization greatly predisposes the mother and baby to a wide range of adverse outcomes, including preterm birth (PTB), stillbirth, and neonatal infection. Although many mechanisms involved in GBS pathogenesis are partially elucidated, there is currently no approved GBS vaccine. The development of a safe and effective vaccine that can be administered during or prior to pregnancy remains a principal objective in the field, because current antibiotic-based therapeutic strategies do not eliminate all cases of invasive GBS infections. Herein, we review our understanding of GBS disease pathogenesis at the maternal-fetal interface with a focus on the bacterial virulence factors and host defenses that modulate the outcome of infection. We follow GBS along its path from an asymptomatic colonizer of the vagina to an invasive pathogen at the maternal-fetal interface, noting factors critical for vaginal colonization, ascending infection, and vertical transmission to the fetus. Finally, at each stage of infection we emphasize important host-pathogen interactions, which, if targeted therapeutically, may help to reduce the global burden of GBS.


Assuntos
Complicações Infecciosas na Gravidez , Nascimento Prematuro , Infecções Estreptocócicas , Feminino , Humanos , Recém-Nascido , Transmissão Vertical de Doenças Infecciosas , Gravidez , Streptococcus agalactiae , Vagina
14.
J Immunol ; 207(8): 2015-2026, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34526377

RESUMO

Infiltration of maternal peripheral leukocytes into the uterine tissues is a critical event occurring before, during, and after term labor (TL). In this article, we investigate the contribution of uterine smooth muscle (myometrium) and pregnant endometrium (decidua) to the inflammatory process during human TL. We hypothesize that labor-related physiological inflammation is orchestrated by uterine-secreted cytokines, which dually activate the uterine vascular endothelium and maternal leukocytes to promote their adhesion and infiltration into the uterus. Using Luminex and ELISA assays, we examine a full range of cytokines (45 proteins) in media conditioned by primary decidual and myometrial cells from TL and term not in labor (TNL) women. The effect of conditioned media on the activation of human uterine microvascular endothelial cells was measured by qPCR and on peripheral leukocytes by flow cytometry. Transendothelial migration of calcein-labeled primary leukocytes toward media was assessed by fluorometry. Stromal decidual cells secrete significantly higher levels of multiple cytokines compared with myometrial cells (p < 0.05) and significantly more cytokines during TL than TNL. These cytokines activate uterine microvascular endothelial cells through the upregulation of cell adhesion molecule VCAM-1 and peripheral leukocytes by upregulation of CD11b. Furthermore, multiple cytokines secreted from the TL decidua and myometrium significantly increase migration of granulocytes, monocytes, and lymphocytes compared with TNL (p < 0.05), which was blocked by a broad-spectrum chemokine inhibitor (FX125L). These data reveal the critical role for decidual- and myometrial-secreted cytokines in the activation of inflammatory pathways leading to labor. We suggest that these pathways represent targets for therapeutic intervention during preterm labor.


Assuntos
Trabalho de Parto , Trabalho de Parto Prematuro , Quimiocinas , Células Endoteliais , Feminino , Humanos , Inflamação , Miométrio , Gravidez
15.
J Clin Med ; 10(13)2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34209869

RESUMO

Preterm birth (PTB) remains the leading cause of infant morbidity and mortality. Despite 50 years of research, therapeutic options are limited and many lack clear efficacy. Tocolytic agents are drugs that briefly delay PTB, typically to allow antenatal corticosteroid administration for accelerating fetal lung maturity or to transfer patients to high-level care facilities. Globally, there is an unmet need for better tocolytic agents, particularly in low- and middle-income countries. Although most tocolytics, such as betamimetics and indomethacin, suppress downstream mediators of the parturition pathway, newer therapeutics are being designed to selectively target inflammatory checkpoints with the goal of providing broader and more effective tocolysis. However, the relatively small market for new PTB therapeutics and formidable regulatory hurdles have led to minimal pharmaceutical interest and a stagnant drug pipeline. In this review, we present the current landscape of PTB therapeutics, assessing the history of drug development, mechanisms of action, adverse effects, and the updated literature on drug efficacy. We also review the regulatory hurdles and other obstacles impairing novel tocolytic development. Ultimately, we present possible steps to expedite drug development and meet the growing need for effective preterm birth therapeutics.

16.
Front Genet ; 12: 680342, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34290739

RESUMO

A wide array of pathogens has the potential to injure the fetus and induce teratogenesis, the process by which mutations in fetal somatic cells lead to congenital malformations. Rubella virus was the first infectious disease to be linked to congenital malformations due to an infection in pregnancy, which can include congenital cataracts, microcephaly, hearing impairment and congenital heart disease. Currently, human cytomegalovirus (HCMV) is the leading infectious cause of congenital malformations globally, affecting 1 in every 200 infants. However, our knowledge of teratogenic viruses and pathogens is far from complete. New emerging infectious diseases may induce teratogenesis, similar to Zika virus (ZIKV) that caused a global pandemic in 2016-2017; thousands of neonates were born with congenital microcephaly due to ZIKV exposure in utero, which also included a spectrum of injuries to the brain, eyes and spinal cord. In addition to congenital anomalies, permanent injury to fetal and neonatal organs, preterm birth, stillbirth and spontaneous abortion are known consequences of a broader group of infectious diseases including group B streptococcus (GBS), Listeria monocytogenes, Influenza A virus (IAV), and Human Immunodeficiency Virus (HIV). Animal models are crucial for determining the mechanism of how these various infectious diseases induce teratogenesis or organ injury, as well as testing novel therapeutics for fetal or neonatal protection. Other mammalian models differ in many respects from human pregnancy including placentation, labor physiology, reproductive tract anatomy, timeline of fetal development and reproductive toxicology. In contrast, non-human primates (NHP) most closely resemble human pregnancy and exhibit key similarities that make them ideal for research to discover the mechanisms of injury and for testing vaccines and therapeutics to prevent teratogenesis, fetal and neonatal injury and adverse pregnancy outcomes (e.g., stillbirth or spontaneous abortion). In this review, we emphasize key contributions of the NHP model pre-clinical research for ZIKV, HCMV, HIV, IAV, L. monocytogenes, Ureaplasma species, and GBS. This work represents the foundation for development and testing of preventative and therapeutic strategies to inhibit infectious injury of human fetuses and neonates.

17.
Am J Obstet Gynecol ; 225(1): 75.e1-75.e16, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33607103

RESUMO

BACKGROUND: During the early months of the coronavirus disease 2019 pandemic, risks associated with severe acute respiratory syndrome coronavirus 2 in pregnancy were uncertain. Pregnant patients can serve as a model for the success of clinical and public health responses during public health emergencies as they are typically in frequent contact with the medical system. Population-based estimates of severe acute respiratory syndrome coronavirus 2 infections in pregnancy are unknown because of incomplete ascertainment of pregnancy status or inclusion of only single centers or hospitalized cases. Whether pregnant women were protected by the public health response or through their interactions with obstetrical providers in the early months of pandemic is not clearly understood. OBJECTIVE: This study aimed to estimate the severe acute respiratory syndrome coronavirus 2 infection rate in pregnancy and to examine the disparities by race and ethnicity and English language proficiency in Washington State. STUDY DESIGN: Pregnant patients with a polymerase chain reaction-confirmed severe acute respiratory syndrome coronavirus 2 infection diagnosed between March 1, 2020, and June 30, 2020 were identified within 35 hospitals and clinics, capturing 61% of annual deliveries in Washington State. Infection rates in pregnancy were estimated overall and by Washington State Accountable Community of Health region and cross-sectionally compared with severe acute respiratory syndrome coronavirus 2 infection rates in similarly aged adults in Washington State. Race and ethnicity and language used for medical care of pregnant patients were compared with recent data from Washington State. RESULTS: A total of 240 pregnant patients with severe acute respiratory syndrome coronavirus 2 infections were identified during the study period with 70.7% from minority racial and ethnic groups. The principal findings in our study were as follows: (1) the severe acute respiratory syndrome coronavirus 2 infection rate was 13.9 per 1000 deliveries in pregnant patients (95% confidence interval, 8.3-23.2) compared with 7.3 per 1000 (95% confidence interval, 7.2-7.4) in adults aged 20 to 39 years in Washington State (rate ratio, 1.7; 95% confidence interval, 1.3-2.3); (2) the severe acute respiratory syndrome coronavirus 2 infection rate reduced to 11.3 per 1000 deliveries (95% confidence interval, 6.3-20.3) when excluding 45 cases of severe acute respiratory syndrome coronavirus disease 2 detected through asymptomatic screening (rate ratio, 1.3; 95% confidence interval, 0.96-1.9); (3) the proportion of pregnant patients in non-White racial and ethnic groups with severe acute respiratory syndrome coronavirus disease 2 infection was 2- to 4-fold higher than the race and ethnicity distribution of women in Washington State who delivered live births in 2018; and (4) the proportion of pregnant patients with severe acute respiratory syndrome coronavirus 2 infection receiving medical care in a non-English language was higher than estimates of pregnant patients receiving care with limited English proficiency in Washington State (30.4% vs 7.6%). CONCLUSION: The severe acute respiratory syndrome coronavirus 2 infection rate in pregnant people was 70% higher than similarly aged adults in Washington State, which could not be completely explained by universal screening at delivery. Pregnant patients from nearly all racial and ethnic minority groups and patients receiving medical care in a non-English language were overrepresented. Pregnant women were not protected from severe acute respiratory syndrome coronavirus 2 infection in the early months of the pandemic. Moreover, the greatest burden of infections occurred in nearly all racial and ethnic minority groups. These data coupled with a broader recognition that pregnancy is a risk factor for severe illness and maternal mortality strongly suggested that pregnant people should be broadly prioritized for coronavirus disease 2019 vaccine allocation in the United States similar to some states.


Assuntos
COVID-19/epidemiologia , Complicações Infecciosas na Gravidez/epidemiologia , Grupos Raciais/estatística & dados numéricos , Adulto , Estudos de Coortes , Feminino , Humanos , Gravidez , Estudos Retrospectivos , Índice de Gravidade de Doença , Washington/epidemiologia , Adulto Jovem
18.
Am J Obstet Gynecol ; 225(1): 89.e1-89.e16, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33412130

RESUMO

BACKGROUND: Intra-amniotic infection or inflammation is common in early preterm birth and associated with substantial neonatal lung morbidity owing to fetal exposure to proinflammatory cytokines and infectious organisms. Amniotic fluid interleukin 8, a proinflammatory cytokine, was previously correlated with the development of neonatal bronchopulmonary dysplasia, but whether amniotic fluid cytokines or placental pathology more accurately predicts neonatal lung pathology and morbidity is unknown. We have used a pregnant nonhuman primate model of group B Streptococcus infection to study the pathogenesis of intra-amniotic infection, bacterial invasion of the amniotic cavity and fetus, and microbial-host interactions. In this nonhuman primate model, we have studied the pathogenesis of group B Streptococcus strains with differing potential for virulence, which has resulted in a spectrum of intra-amniotic infection and fetal lung injury that affords the opportunity to study the inflammatory predictors of fetal lung pathology and injury. OBJECTIVE: This study aimed to determine whether fetal lung injury is best predicted by placental histopathology or the cytokine response in amniotic fluid or maternal plasma. STUDY DESIGN: Chronically catheterized pregnant monkeys (Macaca nemestrina, pigtail macaque) at 116 to 125 days gestation (term at 172 days) received a choriodecidual inoculation of saline (n=5), weakly hemolytic group B Streptococcus strain (n=5, low virulence), or hyperhemolytic group B Streptococcus strain (n=5, high virulence). Adverse pregnancy outcomes were defined as either preterm labor, microbial invasion of the amniotic cavity, or development of the fetal inflammatory response syndrome. Amniotic fluid and maternal and fetal plasma samples were collected after inoculation, and proinflammatory cytokines (tumor necrosis factor alpha, interleukin beta, interleukin 6, interleukin 8) were measured by a multiplex assay. Cesarean delivery was performed at the time of preterm labor or within 1 week of inoculation. Fetal necropsy was performed at the time of delivery. Placental pathology was scored in a blinded fashion by a pediatric pathologist, and fetal lung injury was determined by a semiquantitative score from histopathology evaluating inflammatory infiltrate, necrosis, tissue thickening, or collapse scored by a veterinary pathologist. RESULTS: The principal findings in our study are as follows: (1) adverse pregnancy outcomes occurred more frequently in animals receiving hyperhemolytic group B Streptococcus (80% with preterm labor, 80% with fetal inflammatory response syndrome) than in animals receiving weakly hemolytic group B Streptococcus (40% with preterm labor, 20% with fetal inflammatory response syndrome) and in controls (0% preterm labor, 0% fetal inflammatory response syndrome); (2) despite differences in the rate of adverse pregnancy outcomes and fetal inflammatory response syndrome, fetal lung injury scores were similar between animals receiving the weakly hemolytic group B Streptococcus strains and animals receiving the hyperhemolytic group B Streptococcus strains; (3) fetal lung injury score was significantly correlated with peak amniotic fluid cytokines interleukin 6 and interleukin 8 but not tumor necrosis factor alpha or interleukin 1 beta; and (4) fetal lung scores were poorly correlated with maternal and fetal plasma cytokine levels and placental pathology. CONCLUSION: Amniotic fluid interleukin 6 and interleukin 8 levels were superior predictors of fetal lung injury than placental histopathology or maternal plasma cytokines. This evidence supports a role for amniocentesis in the prediction of neonatal lung morbidity owing to intra-amniotic infection, which cannot be provided by cytokine analysis of maternal plasma or placental histopathology.


Assuntos
Líquido Amniótico/química , Citocinas/sangue , Interleucina-6/análise , Interleucina-8/análise , Lesão Pulmonar/embriologia , Placenta/patologia , Líquido Amniótico/microbiologia , Animais , Modelos Animais de Doenças , Feminino , Inflamação/embriologia , Inflamação/microbiologia , Pulmão/embriologia , Pulmão/microbiologia , Pulmão/patologia , Lesão Pulmonar/diagnóstico , Lesão Pulmonar/microbiologia , Macaca nemestrina , Masculino , Gravidez , Resultado da Gravidez , Infecções Estreptocócicas/embriologia , Streptococcus agalactiae
19.
Am J Obstet Gynecol ; 225(1): 77.e1-77.e14, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33515516

RESUMO

BACKGROUND: Evidence is accumulating that coronavirus disease 2019 increases the risk of hospitalization and mechanical ventilation in pregnant patients and for preterm delivery. However, the impact on maternal mortality and whether morbidity is differentially affected by disease severity at delivery and trimester of infection are unknown. OBJECTIVE: This study aimed to describe disease severity and outcomes of severe acute respiratory syndrome coronavirus 2 infections in pregnancy across the Washington State, including pregnancy complications and outcomes, hospitalization, and case fatality. STUDY DESIGN: Pregnant patients with a polymerase chain reaction-confirmed severe acute respiratory syndrome coronavirus 2 infection between March 1, 2020, and June 30, 2020, were identified in a multicenter retrospective cohort study from 35 sites in Washington State. Sites captured 61% of annual state deliveries. Case-fatality rates in pregnancy were compared with coronavirus disease 2019 fatality rates in similarly aged adults in Washington State using rate ratios and rate differences. Maternal and neonatal outcomes were compared by trimester of infection and disease severity at the time of delivery. RESULTS: The principal study findings were as follows: (1) among 240 pregnant patients in Washington State with severe acute respiratory syndrome coronavirus 2 infections, 1 in 11 developed severe or critical disease, 1 in 10 were hospitalized for coronavirus disease 2019, and 1 in 80 died; (2) the coronavirus disease 2019-associated hospitalization rate was 3.5-fold higher than in similarly aged adults in Washington State (10.0% vs 2.8%; rate ratio, 3.5; 95% confidence interval, 2.3-5.3); (3) pregnant patients hospitalized for a respiratory concern were more likely to have a comorbidity or underlying conditions including asthma, hypertension, type 2 diabetes mellitus, autoimmune disease, and class III obesity; (4) 3 maternal deaths (1.3%) were attributed to coronavirus disease 2019 for a maternal mortality rate of 1250 of 100,000 pregnancies (95% confidence interval, 257-3653); (5) the coronavirus disease 2019 case fatality in pregnancy was a significant 13.6-fold (95% confidence interval, 2.7-43.6) higher in pregnant patients than in similarly aged individuals in Washington State with an absolute difference in mortality rate of 1.2% (95% confidence interval, -0.3 to 2.6); and (6) preterm birth was significantly higher among women with severe or critical coronavirus disease 2019 at delivery than for women who had recovered from coronavirus disease 2019 (45.4% severe or critical coronavirus disease 2019 vs 5.2% mild coronavirus disease 2019; P<.001). CONCLUSION: Coronavirus disease 2019 hospitalization and case-fatality rates in pregnant patients were significantly higher than in similarly aged adults in Washington State. These data indicate that pregnant patients are at risk of severe or critical disease and mortality compared to nonpregnant adults, and also at risk for preterm birth.


Assuntos
COVID-19/mortalidade , Morte Materna , Resultado da Gravidez , Índice de Gravidade de Doença , Adulto , Estudos de Coortes , Feminino , Humanos , Recém-Nascido , Gravidez , Estudos Retrospectivos , Washington/epidemiologia , Adulto Jovem
20.
mBio ; 12(1)2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33402537

RESUMO

Invasive bacterial infections during pregnancy are a major risk factor for preterm birth, stillbirth, and fetal injury. Group B streptococci (GBS) are Gram-positive bacteria that asymptomatically colonize the lower genital tract but infect the amniotic fluid and induce preterm birth or stillbirth. Experimental models that closely emulate human pregnancy are pivotal for the development of successful strategies to prevent these adverse pregnancy outcomes. Using a unique nonhuman primate model that mimics human pregnancy and informs temporal events surrounding amniotic cavity invasion and preterm labor, we show that the animals inoculated with hyaluronidase (HylB)-expressing GBS consistently exhibited microbial invasion into the amniotic cavity, fetal bacteremia, and preterm labor. Although delayed cytokine responses were observed at the maternal-fetal interface, increased prostaglandin and matrix metalloproteinase levels in these animals likely mediated preterm labor. HylB-proficient GBS dampened reactive oxygen species production and exhibited increased resistance to neutrophils compared to an isogenic mutant. Together, these findings demonstrate how a bacterial enzyme promotes GBS amniotic cavity invasion and preterm labor in a model that closely resembles human pregnancy.IMPORTANCE Group B streptococci (GBS) are bacteria that commonly reside in the female lower genital tract as asymptomatic members of the microbiota. However, during pregnancy, GBS can infect tissues at the maternal-fetal interface, leading to preterm birth, stillbirth, or fetal injury. Understanding how GBS evade host defenses during pregnancy is key to developing improved preventive therapies for these adverse outcomes. In this study, we used a unique nonhuman primate model to show that an enzyme secreted by GBS, hyaluronidase (HylB) promotes bacterial invasion into the amniotic cavity and fetus. Although delayed immune responses were seen at the maternal-fetal interface, animals infected with hyaluronidase-expressing GBS exhibited premature cervical ripening and preterm labor. These observations reveal that HylB is a crucial GBS virulence factor that promotes bacterial invasion and preterm labor in a pregnancy model that closely emulates human pregnancy. Therefore, hyaluronidase inhibitors may be useful in therapeutic strategies against ascending GBS infection.


Assuntos
Hialuronoglucosaminidase/metabolismo , Neutrófilos/imunologia , Trabalho de Parto Prematuro/imunologia , Infecções Estreptocócicas/imunologia , Streptococcus agalactiae/metabolismo , Líquido Amniótico/microbiologia , Animais , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Hialuronoglucosaminidase/genética , Inflamação , Pulmão/microbiologia , Pulmão/patologia , Macaca nemestrina , Neutrófilos/microbiologia , Gravidez , Nascimento Prematuro , Primatas , Infecções Estreptocócicas/metabolismo , Infecções Estreptocócicas/microbiologia , Streptococcus agalactiae/enzimologia , Streptococcus agalactiae/genética , Streptococcus agalactiae/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...